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Abstract
Four classes of three-dimensional quadratic algebra of the type [Q0,Q±] =
±Q±, [Q+,Q−] = aQ2

0 + bQ0 + c, where (a, b, c) are constants or central
elements of the algebra, are constructed using a generalization of the well
known two-mode bosonic realizations of su(2) and su(1, 1). The resulting
matrix representations and single variable differential operator realizations are
obtained. Some remarks on the mathematical and physical relevance of such
algebras are given.

PACS numbers: 02.20.-a, 02.10.-v, 02.30.-f, 42.50.-p

1. Introduction

In recent times there has been a great deal of interest in nonlinear deformations of Lie algebras
because of their significant applications in several branches of physics. This is largely based
on the realization that the physical operators relevant for defining the dynamical algebra of a
system need not be closed under a linear (Lie) algebra, but might obey a nonlinear algebra.
Such nonlinear algebras are, in general, characterized by commutation relations of the form

[Ti, Tj ] = Cij ({Tk}) (1.1)

where the functions {Cij } of the generators {Tk} are constrained by the Jacobi identity

[Ti, Cjk] + [Tj , Cki] + [Tk, Cij ] = 0. (1.2)

The functions {Cij } can be an infinite power series in {Tk} as in the case of quantum
algebras (with further Hopf algebraic restrictions) and q-oscillator algebras. When {Cij }
are polynomials of the generators one obtains the so-called polynomially nonlinear, or simply
polynomial, algebras. A special case of interest is when the commutation relations (1.1) take
the form

[Ti, Tj ] = ckij Tk [Ti, Tα] = tβiαTβ [Tα, Tβ] = fαβ({Tk}) (1.3)
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containing a linear subalgebra. The simplest examples of such algebras occur when one gets
a three-dimensional algebra

[N0, N±] = ±N± [N+, N−] = f (N0) (1.4)

in which f (N0) is a polynomial in N0. In general,

C = N+N− + g(N0 − 1) = N−N+ + g(N0) (1.5)

is a Casimir operator of the algebra (1.4) where g(N0) can be determined from the relation

g(N0)− g(N0 − 1) = f (N0). (1.6)

If f (N0) is quadratic in N0 we have a quadratic algebra, and if f (N0) is cubic in N0 we
have a cubic algebra. The polynomial algebras, in particular the quadratic and cubic algebras,
and their representations are involved in the studies of several problems in quantum mechanics,
statistical physics, field theory, Yang–Mills-type gauge theories, two-dimensional integrable
systems, etc [1–16]. These algebras have also been found to occur in quantum optics with
the observation that quantum optical Hamiltonians describing multiphoton processes have
dynamical algebras described by polynomially deformed su(2) and su(1, 1) algebras [17].
Coherent states of different kinds of nonlinear oscillator algebras have been presented by
several authors [18–20]. Recently, we have presented a general unified approach for finding
the coherent states of three-dimensional polynomial algebras [21]. The particular examples
of three-dimensional quadratic algebras, which we have considered in [21], correspond to two
of the four classes of algebras to be presented in this paper. Algebras of the type (1.4) have
also been studied from a purely mathematical point of view [22] suggesting a rich theory of
representations for them. Algebras of the type (1.4) with commutator [N+, N−] replaced by the
anticommutator {N+, N−} leading to polynomial deformations of the superalgebra osp(1|2)
have also been investigated [23].

As is well known, in the case of classical Lie algebras, bosonic realizations play a
very useful role in the representation theory and applications to physical problems. The
main purpose of this paper is to study some aspects of three-dimensional quadratic algebras
relating to bosonic realizations and the associated matrix representations, differential operator
realizations, and physical relevance. In section 2 we briefly review the well-known construction
of su(2) and su(1, 1) algebras in terms of two-mode bosonic operators. In section 3 we
show that a generalization of the Jordan–Schwinger method, using su(2) or su(1, 1) and
a boson algebra as the building blocks, leads to the construction of four classes of three-
dimensional quadratic algebras. In sections 4–7 we exhibit the three-mode bosonic realizations
of these quadratic algebras and derive the associated matrix representations and single variable
differential operator realizations. Finally, in section 8 we conclude with a few remarks on the
physical and mathematical relevance of these quadratic algebras.

2. Two-mode bosonic construction of su(2) and su(1, 1): a brief review

Let us briefly recall the study of su(2) and su(1, 1) in terms of two-mode bosonic realizations,
to fix the framework and notations for our work. We let

(
a1, a

†
1

)
and

(
a2, a

†
2

)
be two mutually

commuting boson annihilation–creation operator pairs, and H1 = N1 + 1
2 = a

†
1a1 + 1

2 and

H2 = N2 + 1
2 = a†

2a2 + 1
2 . As is well known, (J0, J+, J−) defined by

J0 = 1
2 (H1 −H2) J+ = a†

1a2 J− = J †
+ = a1a

†
2 (2.1)

satisfy the su(2) algebra,

[J0, J±] = ±J± [J+, J−] = 2J0. (2.2)
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In this Jordan–Schwinger realization of su(2), H1 +H2 is seen to be a central element: if

L = 1
2 (H1 +H2) (2.3)

then, [L, J0,±
] = 0. (2.4)

The usual Casimir operator is

C = J 2 = J+J− + J0(J0 − 1) = L2 − 1
4 . (2.5)

Consequently, the application of the realization (2.1) on a set of 2j + 1 two-mode Fock
states |n1〉|n2〉, with constant n1 + n2 = 2j , leads to the (2j + 1)-dimensional unitary
irreducible representation for each j = 0, 1/2, 1, . . .. Thus, with {|j,m〉 = |j + m〉|j − m〉
|m = j, j − 1, . . . ,−j} as the basis states, one gets the j th unitary irreducible representation

J0|j,m〉 = m|j,m〉
J±|j,m〉 =

√
(j ∓m)(j ±m + 1) |j,m± 1〉

L|j,m〉 = (
j + 1

2

)|j,m〉 J 2|j,m〉 = j (j + 1)|j,m〉
m = j, j − 1, . . . ,−j.

(2.6)

Let us now consider the single variable differential operator realization corresponding to
the above matrix representation (2.6). With the Fock–Bargmann correspondence

(
a†, a

) −→
(
z,

d

dz

)
|n〉 −→ zn√

n!
(2.7)

we can make the association

|j,m〉 −→ z
j+m
1 z

j−m
2√

(j +m)!(j −m)! = z
2j
2 (z1/z2)

j+m

√
(j +m)!(j −m)!

m = −j,−j + 1, . . . , j − 1, j.

(2.8)

Since j is a constant for a given representation we can rewrite the above as a mapping to
monomials

|j,m〉 −→ ψj,n(z) = zn√
n!(2j − n)! n = 0, 1, 2, . . . , 2j. (2.9)

Then, it is obvious that the above set of (2j + 1) monomials (2.9) forms the basis carrying the
finite-dimensional representation (2.6) corresponding to the single variable realization

J0 = z d

dz
− j J+ = −z2 d

dz
+ 2jz J− = d

dz
. (2.10)

In an analogous way, (K0,K+,K−) defined by

K0 = 1
2 (H1 +H2) K+ = a†

1a
†
2 K− = K†

+ = a1a2 (2.11)

satisfy the su(1, 1) algebra

[K0,K±] = ±K± [K+,K−] = −2K0. (2.12)

Now,

L = 1
2 (H1 −H2) (2.13)

is a central element of the algebra:

[L,K0,±] = 0. (2.14)

The usual Casimir operator is

C = K2 = K+K− −K0(K0 − 1) = 1
4 − L2. (2.15)
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Consequently, the application of the realization (2.11) on any infinite set of two-mode Fock
states {|k, n〉 = |n + 2k − 1〉|n〉 |n = 0, 1, 2, . . .}, with constant n1 − n2 = 2k − 1, leads
to the infinite-dimensional unitary irreducible representation, the so-called positive discrete
representation D+(k), corresponding to any k = 1/2, 1, 3/2, . . ..:

K0|k, n〉 = (k + n)|k, n〉
K+|k, n〉 =

√
(2k + n)(n + 1) |k, n + 1〉

K−|k, n〉 =
√
(2k + n− 1)n |k, n− 1〉

L|k, n〉 = (
k − 1

2

)|k, n〉 K2|k, n〉 = k(1 − k)|k, n〉
n = 0, 1, 2, . . . .

(2.16)

Note that the choice of basis states as {|k, n〉 = |n〉|n + 2k − 1〉 |n = 0, 1, 2, . . .}, with
n1−n2 = 1−2k, is also possible leading to the same representation (2.16), withK2 = k(1−k),
but corresponding to L = 1

2 − k.
As in the su(2) case, we can make the association

|k, n〉 −→ zn+2k−1
1 zn2√

(n + 2k − 1)!n!
= (z1z2)

nz2k−1
1√

(n + 2k − 1)!n!
. (2.17)

Then, with k being constant in a given representation, it is obvious that the infinite set of
monomials

φk,n(z) = zn√
(n + 2k − 1)!n!

n = 0, 1, 2, . . . (2.18)

forms the basis carrying the representation (2.16) corresponding to the single variable
realization

K0 = z d

dz
+ k K+ = z K− = z d2

dz2
+ 2k

d

dz
. (2.19)

3. Construction of four classes of three-dimensional quadratic algebras

A three-dimensional quadratic algebra is defined, in general, by the commutation relations

[Q0,Q±] = ±Q± [Q+,Q−] = aQ2
0 + bQ0 + c (3.1)

where the structure constants (a, b, c) are constants, or central elements of the algebra so that
they take constant values in any irreducible representation. In general, a Casimir operator of
the algebra (3.1) is

C = Q+Q− + 1
3aQ

3
0 − 1

2 (a − b)Q2
0 + 1

6 (a − 3b + 6c)Q0 − c. (3.2)

When a = c = 0 and b = ±2 one gets, respectively, su(2) and su(1, 1) as special cases.
Quadratic algebras and their representations, physically relevant to the situations, have

been studied in physics literature in the context of several specific physical problems where
(a, b, c) take particular values depending on the problem studied. But there seems to be
no systematic study of realizations, representations, and any classification of the quadratic
algebras corresponding to arbitrary values of (a, b, c). The main purpose of this paper is to
observe that a generalization of the Jordan–Schwinger method leads to four classes of three-
dimensional quadratic algebras, in each of which the constants (a, b, c) take a particular series
of values. To this end we proceed as follows.

Let
{(
ai, a

†
i

)∣∣i = 1, 2, 3
}

be three mutually commuting boson annihilation–creation

operator pairs. Let Ni = a†
i ai and Hi = Ni + 1

2 for each i = 1, 2, 3. Now, we let

Q0 = 1
2 (J0 −N3) Q+ = J+a3 Q− = J−a

†
3 (3.3)
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replacing in (2.1) (H1, a
†
1, a1) by (J0, J+, J−) respectively, and (H2, a

†
2, a2) by (N3, a

†
3, a3)

respectively (note that (J0, J+, J−) already contain two sets of bosonic operators). It is now
straightforward to observe that, with L and J defined by

L = 1
2 (J0 +N3) J = J+J− + J0(J0 − 1) = J 2 (3.4)

we have

[Q0,Q±] = ±Q±
[Q+,Q−] = −3Q2

0 − (2L − 1)Q0 + (J + L(L + 1))
(3.5)

and

[L,J ] = 0 [L,Q0,±] = 0 [J ,Q0,±] = 0. (3.6)

The Casimir operator (3.2) becomes

C = Q+Q− −Q3
0 − (L − 2)Q2

0 +
(J + L2 + 2L − 1

)
Q0 − (J + L(L + 1)). (3.7)

Next, let us replace in (2.11)
(
H1, a

†
1, a1

)
by (J0, J+, J−) respectively, and

(
H2, a

†
2, a2

)
by

(
N3, a

†
3, a3

)
respectively. This leads to the definitions

Q0 = 1
2 (J0 +N3) Q+ = J+a

†
3 Q− = J−a3 (3.8)

which obey the algebra

[Q0,Q±] = ±Q±
[Q+,Q−] = 3Q2

0 + (2L + 1)Q0 − (J + L(L − 1))
(3.9)

with

L = 1
2 (J0 −N3) J = J+J− + J0(J0 − 1) = J 2 (3.10)

being the central elements of the algebra. The Casimir operator becomes

C = Q+Q− +Q3
0 + (L − 1)Q2

0 − (J + L2
)
Q0 + (J + L(L − 1)). (3.11)

Let us now use the su(1, 1) generators instead of the su(2) generators in the above scheme.
Thus we replace in (3.3) (J0, J+, J−) by (K0,K+,K−) respectively. The result is that

Q0 = 1
2 (K0 −N3) Q+ = K+a3 Q− = K−a

†
3 (3.12)

satisfy the algebra

[Q0,Q±] = ±Q±
[Q+,Q−] = 3Q2

0 + (2L − 1)Q0 + (K − L(L + 1))
(3.13)

with

L = 1
2 (K0 +N3) K = K+K− −K0(K0 − 1) = K2 (3.14)

as the central elements. The Casimir operator becomes

C = Q+Q− +Q3
0 + (L − 2)Q2

0 +
(K − L2 − 2L + 1

)
Q0 − (K − L(L + 1)). (3.15)

If, in (3.8), we replace (J0, J+, J−) by (K0,K+,K−) respectively, the result is that

Q0 = 1
2 (K0 +N3) Q+ = K+a

†
3 Q− = K−a3 (3.16)

satisfy the algebra

[Q0,Q±] = ±Q±
[Q+,Q−] = −3Q2

0 − (2L + 1)Q0 − (K − L(L − 1))
(3.17)

with

L = 1
2 (K0 −N3) K = K+K− −K0(K0 − 1) = K2 (3.18)
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being the central elements. The Casimir operator is

C = Q+Q− −Q3
0 − (L − 1)Q2

0 − (K − L2
)
Q0 + (K − L(L − 1)). (3.19)

Thus, by combining the generators of su(2), or su(1, 1), and an oscillator algebra,
analogous to the way two oscillator algebras are combined to get su(2) or su(1, 1), we get
four classes of three-dimensional quadratic algebras of the type (3.1) with (a, b, c) as central
elements. Let us call the algebras (3.5), (3.9), (3.13) and (3.17), respectively, Q−(2), Q+(2),
Q−(1, 1) and Q+(1, 1) where the superscripts ± indicate whether the corresponding Q0 is a
sum or a difference (correspondingly the forms ofQ± get fixed). We shall study the realizations
and representations of these quadratic algebras in the following sections.

4. Representations of Q−(2)

For the algebra Q−(2) defined in (3.5) J and L are to be constants in any irreducible
representation. This implies that we can take the basis states of the irreducible representations
as

|j, l, m〉 = |j,m〉|2l −m〉 (4.1)

such that

J |j, l, m〉 = j (j + 1)|j, l, m〉 L|j, l, m〉 = l|j, l, m〉 (4.2)

where {|j,m〉} are the su(2) basis states (2.6) and {|2l−m〉} are the oscillator eigenstates such
that N3|2l − m〉 = (2l − m)|2l − m〉. This requires 2l − m to be a non-negative integer for
all values of m. Thus, two cases arise which are to be considered separately. In general, the
Casimir operator (3.7) has the value (l + 1)[j (j + 1)− l(l − 1)] in both cases.

Case 1. 2l − j � 0. In this case the set of basis states

|j, l, m〉 = |j,m〉|2l −m〉 m = −j,−j + 1, . . . , j − 1, j (4.3)

carry the (j, l)th, (2j + 1)-dimensional, unitary irreducible representation

Q0|j, l, m〉 = (m− l)|j, l, m〉
Q+|j, l, m〉 =

√
(j −m)(j +m + 1)(2l −m)|j, l, m + 1〉

Q−|j, l, m〉 =
√
(j +m)(j −m + 1)(2l −m + 1)|j, l, m− 1〉

m = −j,−j + 1, . . . , j − 1, j.

(4.4)

Let us look at the two-dimensional representations. These correspond to j = 1/2 and for each
value of l = 1/4, 3/4, 5/4, . . . , there is a two-dimensional representation given by

Q0 =
( − 1

2 − l 0
0 1

2 − l
)

Q+ =
(

0 0√
2l + 1

2 0

)
Q− =

(
0

√
2l + 1

2

0 0

)

J = 3/4 L = l C = (−4l3 + 7l + 3)/4

(4.5)

as can be verified directly.
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Case 2. 2l − j < 0. In this case the set of basis states

|j, l, m〉 = |j,m〉|2l −m〉 m = −j,−j + 1, . . . , 2l (4.6)

carry the (j, l)th unitary irreducible representation of dimension j + 2l + 1 given by

Q0|j, l, m〉 = (m− l)|j, l, m〉
Q+|j, l, m〉 =

√
(j −m)(j +m + 1)(2l −m)|j, l, m + 1〉

Q−|j, l, m〉 =
√
(j +m)(j −m + 1)(2l −m + 1)|j, l, m− 1〉

m = −j,−j + 1, . . . , 2l.

(4.7)

In this case for any j > 1/2 there is a two-dimensional representation corresponding to
l = (1 − j)/2. Explicitly,

Q0 = 1
2

( −j − 1 0
0 1 − j

)

Q+ =
(

0 0√
2j 0

)
Q− =

(
0

√
2j

0 0

)

J = j (j + 1) L = (1 − j)/2 C = (−3j 3 + 5j 2 + 11j + 3)/8

(4.8)

as can be verified directly.
By using the two-mode bosonic realization of su(2) we can write down the three-mode

bosonic realization ofQ−(2) as

Q0 = 1
4

(
a

†
1a1 − a†

2a2 − 2a†
3a3

)
Q+ = a†

1a2a3 Q− = a1a
†
2a

†
3 . (4.9)

Correspondingly we can take the basis states (4.1) of the irreducible representations as the
three-mode Fock states

|j, l, m〉 = |j +m〉|j −m〉|2l −m〉. (4.10)

Then the action of (Q0,Q+,Q−) defined by (4.9) on these basis states leads to the irreducible
representations (4.4) and (4.7), respectively, in the two cases 2l − j � 0 and 2l − j < 0.

Let us now make the association

|j,m, l〉 −→ z
2j
2 z

2l+j
3 (z1/z2z3)

j+m

√
(j +m)!(j −m)!(2l −m)! . (4.11)

Since j and l are constants, this shows that the set of functions

ψ−
j,l,n(z) = zn√

n!(2j − n)!(2l + j − n)! n = 0, 1, 2, . . . , 2j or 2l + j (4.12)

forms the basis for the representation (4.4) or (4.7), respectively, corresponding to the single
variable realization

Q0 = z d

dz
− j − l

Q+ = z3 d2

dz2
− (2l + 3j + 1)z2 d

dz
+ 2j (2l − j)z Q− = d

dz
.

(4.13)

5. Representations of Q+(2)

For the algebraQ+(2)defined in (3.9) the constancy of J and L in any irreducible representation
implies that the basis states can be taken as

|j, l, m〉 = |j,m〉|m− 2l〉 (5.1)
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such that

J |j, l, m〉 = j (j + 1)|j, l, m〉 L|j, l, m〉 = l|j, l, m〉 (5.2)

where {|j,m〉} are the su(2) basis states and {|m− 2l〉} are the oscillator eigenstates such that
N3|m− 2l〉 = (m− 2l)|m− 2l〉. The requirement thatm− 2l has to be a non-negative integer
for any value of m implies that 2l + j always has to be zero or a negative integer. Thus the
irreducible representations of this algebra are labelled by the pairs {(j, l)} such that 2l + j
is zero or a negative integer. The corresponding (j, l)th irreducible representation is always
(2j + 1)-dimensional and is given by

Q0|j, l, m〉 = (m− l)|j, l, m〉
Q+|j, l, m〉 =

√
(j −m)(j +m + 1)(m− 2l + 1)|j, l, m + 1〉

Q−|j, l, m〉 =
√
(j +m)(j −m + 1)(m− 2l)|j, l, m− 1〉

m = −j,−j + 1, . . . , j − 1, j.

(5.3)

The Casimir operator (3.11) takes the value (1 − l)[j (j + 1)− l(l + 1)] in this representation.
Note that the irreducible representations in this case are analogous to those of su(2) except
that there are infinitely many inequivalent irreducible representations of the same dimension
corresponding to the infinity of the possible values of l for each value of j .

The two-dimensional representations correspond to j = 1/2 and l =
−1/4,−3/4,−5/4, . . ., and are given by

Q0 =
( − 1

2 − l 0
0 1

2 − l
)

Q+ =
(

0 0√
1
2 − 2l 0

)
Q− =

(
0

√
1
2 − 2l

0 0

)

J = 3/4 L = l C = 1
4

(
4l3 − 7l + 3

)
.

(5.4)

By using the two-mode bosonic realization of su(2) we can write down the three-mode
bosonic realization ofQ+(2) as

Q0 = 1
4

(
a

†
1a1 − a†

2a2 + 2a†
3a3

)
Q+ = a†

1a2a
†
3 Q− = a1a

†
2a3. (5.5)

Correspondingly we can take the basis states (5.1) of the irreducible representations as the
three-mode Fock states

|j, l, m〉 = |j +m〉|j −m〉|m− 2l〉. (5.6)

Then the action of (Q0,Q+,Q−) defined by (5.5) on these basis states leads to the irreducible
representation (5.3).

Now, we can make the association

|j,m, l〉 −→ z
2j
2 z

−(2l+j)
3 (z1z3/z2)

j+m

√
(j +m)!(j −m)!(m− 2l)!

. (5.7)

Since j and l are constants, this shows that the set of functions

ψ+
j,l,n(z) = zn√

n!(2j − n)!(n− 2l − j)! n = 0, 1, 2, . . . , 2j (5.8)

forms the basis for the representation (5.3) corresponding to the single variable realization

Q0 = z d

dz
− j − l Q+ = −z2 d

dz
+ 2jz Q− = z d2

dz2
− (2l − j − 1)

d

dz
. (5.9)
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6. Representations of Q−(1, 1)

For the algebra Q−(1, 1) defined in (3.13) the condition that K and L take constant values in
an irreducible representation fixes the basis to be the set of states

|k, l, n〉 = |k, n〉|2l − k − n〉 n = 0, 1, 2, . . . , (2l − k) (6.1)

where {|k, n〉} are the su(1, 1) basis states (2.16), {|2l − k − n〉} are the oscillator states such
that N3|2l − k − n〉 = (2l − k − n)|2l − k − n〉,

2l − k = 0, 1, 2, . . . k = 1/2, 1, 3/2, . . . (6.2)

and

K|k, l, n〉 = k(1 − k)|k, l, n〉 L|k, l, n〉 = l|k, l, n〉. (6.3)

The basis states (6.1) carry the (k, l)th, (2l − k + 1)-dimensional, unitary irreducible
representation:

Q0|k, l, n〉 = (k − l + n)|k, l, n〉
Q+|k, l, n〉 =

√
(n + 2k)(n + 1)(2l − k − n) |k, l, n + 1〉

Q−|k, l, n〉 =
√
(n + 2k − 1)n(2l − k − n + 1) |k, l, n− 1〉

n = 0, 1, 2, . . . , (2l − k).

(6.4)

The Casimir operator (3.15) has the value (l + 1)[k(1 − k) + l(l − 1)] in this representation.
For this algebra there is a two-dimensional representation for each value of k =

1/2, 1, 3/2, . . ., as given by

Q0 = 1
2

(
k − 1 0

0 k + 1

)
Q+ =

(
0 0√
2k 0

)
Q− =

(
0

√
2k

0 0

)

K = k(1 − k) L = l = 1
2 (k + 1) C = 1

8

( − 3k3 − 5k2 + 11k − 3
) (6.5)

as can be verified directly.
By using the two-mode bosonic realization of su(1, 1)we can write down the three-mode

bosonic realization ofQ−(1, 1) as

Q0 = 1
4

(
a

†
1a1 + a†

2a2 − 2a†
3a3 + 1

)
Q+ = a†

1a
†
2a3 Q− = Q†

+ = a1a2a
†
3 . (6.6)

Translating the basis states (6.1) into the three-mode Fock states it is found that the action of
(Q0,Q+,Q−) defined by (6.6) on the basis states {|k, l, n〉 = |n + 2k − 1〉|n〉|2l − k − n〉}
leads to the representation (6.4).

As before, let us make the association

|k, l, n〉 −→ z2k−1
1 z2l−k

3 (z1z2/z3)
n

√
(n + 2k − 1)!n!(2l − k − n)! . (6.7)

Since k and l are constants for a given representation we can take

φ−
k,l,n(z) = zn√

(n + 2k − 1)!n!(2l − k − n)! n = 0, 1, 2, . . . , (2l − k) (6.8)

as the set of basis functions for the single variable realization

Q0 = z d

dz
+ k − l Q+ = −z2 d

dz
+ (2l − k)z Q− = z d2

dz2
+ 2k

d

dz
(6.9)

leading to the representation (6.4).
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7. Representations of Q+(1, 1)

For the algebra Q+(1, 1) defined in (3.17) the constancy of K and L in any irreducible
representation fixes the basis to be the set of states

|k, l, n〉 = |k, n〉|n + k − 2l〉 n = 0, 1, 2, . . . (7.1)

where {|k, n〉} are the su(1, 1) basis states, {|n + k − 2l〉} are the oscillator states such that
N3|n + k − 2l〉 = (n + k − 2l)|n + k − 2l〉,

k − 2l = 0, 1, 2, . . . k = 1/2, 1, 3/2, . . . (7.2)

and

K|k, l, n〉 = k(1 − k)|k, l, n〉 L|k, l, n〉 = l|k, l, n〉. (7.3)

The set of basis states (7.1) carry the (k, l)th, infinite-dimensional unitary irreducible
representation:

Q0|k, l, n〉 = (k − l + n)|k, l, n〉
Q+|k, l, n〉 =

√
(n + 2k)(n + 1)(n + k − 2l + 1) |k, l, n + 1〉

Q−|k, l, n〉 =
√
(n + 2k − 1)n(n + k − 2l) |k, l, n− 1〉

n = 0, 1, 2, . . . .

(7.4)

The Casimir operator (3.19) has the value l(l − k2) in this representation.
In terms of three bosonic modes the realization of (Q0,Q+,Q−) is given by

Q0 = 1
4

(
a

†
1a1 + a†

2a2 + 2a†
3a3 + 1

)
Q+ = a†

1a
†
2a

†
3 Q− = Q†

+ = a1a2a3. (7.5)

The application of this realization to the set of three-mode Fock states

|k, l, n〉 = |n + 2k − 1〉|n〉|n + k − 2l〉 n = 0, 1, 2, . . . (7.6)

leads to the (k, l)th irreducible representation (7.4).
From the association

|k, l, n〉 −→ z2k−1
1 zk−2l

3 (z1z2z3)
n

√
(n + 2k − 1)!n!(n + k − 2l)!

(7.7)

it is clear that we can take

φ+
k,l,n(z) = zn√

(n + 2k − 1)!n!(n + k − 2l)!
(7.8)

as the set of basis functions for the single variable realization associated with the
representation (7.4). The corresponding realization is

Q0 = z d

dz
+ k − l Q+ = z

Q− = z2 d3

dz3
+ (3k − 2l + 2)z

d2

dz2
+

(
2k2 − 4kl + 2k

) d

dz
.

(7.9)

8. Concluding remarks

As already mentioned in the introduction, polynomial algebras occur in several physical
problems and have mathematically rich structures. Here we would like to make some
observations with reference to the three-dimensional quadratic algebras we have constructed.

Let us first look at the Dicke model in quantum optics. This model, generalizing the
Jaynes–Cummings model, describes the interaction of the radiation field with a collection of
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identical two-level atoms located within a distance much smaller than the wavelength of the
radiation. In the particular case when the atoms interact resonantly with a single mode coherent
cavity field, the (Tavis–Cummings) Hamiltonian, under the electric dipole and rotating wave
approximations, is given by (in the units h̄ = 1)

H = ω(
J0 + a†a

)
+ gJ+a + g∗J−a† (8.1)

whereω is the frequency of the field mode (and the atomic transition), J0 +a†a is the excitation
number operator, and g is the coupling constant. The annihilation and creation operators a
and a† correspond to the single mode radiation field. The operators

J0 =
∑
j

σ
j

0 J± =
∑
j

σ
j
± (8.2)

with σ j0,± as mutually commuting triplets of the Pauli matrices, obey the su(2) algebra and
define the collective atomic operators. From purely physical arguments it is possible to
construct the matrix representation of the Hamiltonian (8.1) and to study its spectrum and
applications [35, 36] (see [37] for an extensive review). The excitation number operator
(corresponding to our L) and J 2 are known integrals of motion for the system. Thus it is now
easy to recognizeQ−(2) as the dynamical algebra of the Hamiltonian (8.1). The two cases of
representations (4.4)–(4.7) we have found are exactly the ones identified in the literature from
a physical point of view. We hope that this precise identification of the dynamical algebra
of the Dicke model will help its further understanding. In this regard, our earlier proposal
of a general method for constructing the Barut–Girardello-type and Perelomov-type coherent
states of any three-dimensional polynomial algebra [21] should be useful. In [21] we have, in
particular, considered the examples ofQ±(1, 1) and the cubic Higgs algebra with reference to
the construction of coherent states.

One should also note the following. As in the case of any Lie algebra one may also
present a polynomial algebra equivalently by choosing linear combinations of the generators
as new generators. For example, following [38], we may take X3 = Q0 + L, X+ = J+a and
X− = J−a† as the three generators ofQ−(2). Then the corresponding algebraic relations are

[X3, X±] = ±X± [X+, X−] = −3X2
3 + (4L + 1)X3 + J 2. (8.3)

This is easily seen by substituting Q0 = X3 − L in (3.5). In [38] the three-dimensional
quadratic algebra defined by (8.3), equivalent toQ−(2), has been considered for constructing
the relative-phase operator for the Dicke model.

Next let us consider the Hamiltonian

H = a†
1a1 + a†

2a2 + 2a†
3a3 + 2 (8.4)

which describes, in the units h̄ = 1 and ω = 1, a three-dimensional anisotropic quantum
harmonic oscillator with the frequency in the third direction twice that in the perpendicular
plane. If we relate H to Q0 in (7.5) it is clear that Q+(1, 1) is the dynamical algebra of
the system (8.4). From the representations (7.4) one can easily arrive at the result that the
spectrum of H is the set of all integers �2. Let us look at the invariance algebra of H . From
the construction ofQ−(1, 1) we recognize that

H = 4L + 1 (8.5)

where L is a central element of the algebra generated by (Q0,Q±) in (3.13) or (6.6). Thus,
(K,Q0,Q±) are the integrals of motion for the system (8.4), or in other words, Q−(1, 1) is
the invariance algebra of the system. Since L has the spectrum

L = l = n/4 n = 1, 2, 3, . . . (8.6)
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it is clear that the Hamiltonian (8.4) has the spectrum

H = N + 2 N = 0, 1, 2, . . . . (8.7)

Each level can be labelled by the eigenvalues of a complete set of commuting operators
(H−2,K). It is interesting to compute the degeneracy of theN th level using the representation
theory of the algebra (3.13). For the N th level the value of L is l = (N + 1)/4. Calculating
the corresponding values of k for which finite-dimensional representations are possible we
find that the dimensions of the associated irreducible representations are (1, 2, . . . , 2m + 1) if
N = 4m or 4m + 1, and (1, 2, . . . , 2m + 2) if N = 4m + 2 or 4m + 3. The degeneracy of the
level is the sum of the dimension of the k = 1/2 representation and twice the dimensions of
k > 1/2 representations. One has to count the dimensions of k > 1/2 representations twice in
the sum since there are two possible choices for the bases leading to the same representation
in these cases as already noted. Now, the four cases, N = 4m, 4m + 1, 4m + 2 and 4m + 3,
are to be considered separately. The result is as follows: the degeneracies of the levels,
N = 4m, 4m + 1, 4m + 2 and 4m + 3, respectively, are (2m + 1)2, (2m + 1)(2m + 2), 4(m + 1)2

and 2(m+ 1)(2m+ 3). In other words, the number of compositions of the integerN (partitions
with ordering taken into account) in the prescribed pattern n1 +n2 +2n3, with the interchange of
n1 and n2 taken into account, is (2m+1)2, (2m+1)(2m+2), 4(m+1)2 and 2(m+1)(2m+3), if
N = 4m, 4m+1, 4m+2, and 4m+3, respectively. It is to be noted that in this example the sum
of all the dimensions of the irreducible representations associated with the given l = (N +1)/4
gives the number of partitions of N in the pattern n1 + n2 + 2n3, disregarding the interchange
of n1 and n2. This leads to the result that the number of such partitions is (m + 1)(2m + 1) for
N = 4m or 4m + 1 and (m + 1)(2m + 3) for N = 4m + 2 or 4m + 3. Thus, it is interesting
to observe this connection between a three-dimensional quadratic algebra and the theory of
partitions.

It should be noted that, if one can identify a given three-dimensional quadratic algebra as
belonging to one of the four classes we have considered, then its representation theory can be
worked out immediately, at least partially. For example, we observe that

Q0 = a†a Q+ = 1√
3

(
a†

)3
Q− = 1√

3
a3 (8.8)

obey the algebra

[Q0,Q±] = ±Q± [Q+,Q−] = −3Q2
0 − 3Q0 + 2. (8.9)

This algebra is uniquely identified withQ+(1, 1) with L = l = 1 and K = k(1 − k) = −2 (or
k = 2). Correspondingly the algebra is seen to have the infinite-dimensional representation
given by

Q0|n〉 = (n + 1)|n〉
Q+|n〉 = (n + 1)

√
n + 4|n + 1〉 Q−|n〉 = n

√
n + 3|n− 1〉

n = 0, 1, 2, . . . .

(8.10)

The fact that the representations we have discussed are not complete is clear from the following
example. For a two-dimensional anisotropic quantum harmonic oscillator the Hamiltonian is

H = a†
1a1 + 2a†

2a2 + 3
2 (8.11)

in the units h̄ = 1 and ω = 1. The invariance algebra of this Hamiltonian is generated by

Q0 = 1
4

(
a

†
1a1 − 2a†

2a2 + 1
2

)
Q+ = 1

2

(
a

†
1

)2
a2 Q− = 1

2a
2
1a

†
2 (8.12)

and the algebra is given by

[Q0,Q±] = ±Q±
[Q+,Q−] = 3Q2

0 + 1
2 (H − 3)Q0 − 1

16H(H + 2) + 3
8 .

(8.13)
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This algebra can be readily identified with Q−(1, 1) corresponding to L = (H − 1)/4 and
K = k(1−k) = 3/16 or k = 1/4 or 3/4. It may be noted that the corresponding representations
cannot be presented in terms of the three-boson Fock states since these, considered in section 6,
correspond only to k = 1/2, 1, 3/2, . . .. To get the representations of the algebra (8.13) one
will have to combine the representations of a boson algebra with the representations of su(1, 1)
for k= 1/4 or 3/4 (in terms of single boson Fock states). A detailed discussion of the algebraic
approach to the two-dimensional quantum system of an anisotropic oscillator with an additional
singular potential in one direction is found in [13].

An interesting possibility is suggested by the structure of the algebra Q−(1, 1). Let us
define

N = Q0 A = 1√L(L + 1)− K Q− A† = 1√L(L + 1)− K Q+. (8.14)

Then the algebra (3.13) becomes

[N,A] = −A [
N,A†

] = A†

[
A,A†

] = 1 − 2L − 1

L(L + 1)− K N − 3

L(L + 1)− K N
2.

(8.15)

We may consider this as the defining algebra of a quadratic oscillator, corresponding to a
special case of the general class of deformed oscillators [24–34]:

[N,A] = −A [
N,A†

] = A†
[
A,A†

] = F(N). (8.16)

The quadratic oscillator (8.15) belongs to the class of generalized deformed parafermions [12].
It should be interesting to study the physics of assemblies of quadratic oscillators. In fact, the
canonical fermion, with

N =
(

0 0
0 1

)
f =

(
0 1
0 0

)
f † =

(
0 0
1 0

)
(8.17)

is a quadratic oscillator! We observe that

[N, f ] = −f [
N, f †

] = f †
[
f, f †

] = 1 − 1
2N − 3

2N
2. (8.18)

To conclude, starting with su(2), su(1, 1), and an oscillator algebra, we have constructed
four classes of three-dimensional quadratic algebras of the type

[Q0,Q±] = ±Q± [Q+,Q−] = aQ2
0 + bQ0 + c. (8.19)

In each class the structure constants (a, b, c) take a particular series of values. We have
also found for these algebras the three-mode bosonic realizations, corresponding matrix
representations, and single variable differential operator realizations. We hope that this work
will lead to further insights into a more complete understanding of the representation theory
of arbitrary three-dimensional quadratic algebras.
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